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Abstract. The Schrödinger operator with a quadratically growing potential on the positive half-line with the
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1 Introduction

Quantum mechanics gave a powerful impetus to the development of the spectral theory of
differential operators with increasing coefficients. In particular, various spectral problems for
the Schrödinger operator with increasing potential were studied very extensively (Abbasova &
Khanmamedov, 2022; Bagirova & Khanmamedov, 2018; Guseinov et al., 2018; Gafarova et al.,
2021; Korotyaev, 2018; Savchuk & Shkalikov, 2017; Chelkak et al., 2004; Chelkak & Korotyaev,
2007). In some problems of conformal field theory are closely related to the Schrödinger operator
with an quadratic potential (Sahnovich, 1964). However, the question of describing the domain
of definition of such operators has not been studied previously.

We consider the operator L defined on the space L2 (0,+∞) by the differential expression

l (y) = −y′′ +
(
x2 + x

)
y, x ∈ [0,+∞)

with the domain

D (L) =
{
y ∈ L2 (0,+∞) : y ∈W 2

2,loc, l (y) ∈ L2 (0,+∞) , y (0) = 0
}
.

In this paper we describe the domain of definition of the operator L.
Consider the equation

−y′′ +
(
x2 + x

)
y = λy. (1)

If we set z = x+ 1
2 , u (z) = y

(
z − 1

2

)
, ν = λ+ 1

4 , then equation (1) takes the form

−u′′ (z) + z2u (z) = ν u (z) .

It is well known (see (Abramowitz & Stegun, 1964)) that this equation has two linearly indepen-
dent solutions D ν−1

2

(√
2z
)

and D ν−1
2

(
−
√

2z
)
, where Dν (z) is Weber function. Therefore, the
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equation (1) has two solutions ψ (x, λ) = D 4λ−3
8

(√
2
(
x+ 1

2

))
and Ψ (x, λ) = D 4λ−3

8

(
−
√

2
(
x+ 1

2

))
.

For each x both these functions are entire functions of the index λ. Moreover, the solutions
ψ (x, λ) = D 4λ−3

8

(√
2
(
x+ 1

2

))
and Ψ (x, λ) = D 4λ−3

8

(
−
√

2
(
x+ 1

2

))
for λ 6= 2n+ 3

4 , n = 0, 1, 2, ...

are linearly independent, because their Wronskian is equal (Abramowitz & Stegun, 1964) to
W (λ) = 2

√
πΓ−1

(
3−4λ
8

)
, where Γ (·) is Gamma function. Since x2 + x → +∞ as x → +∞,

it follows that the operator L has a purely discrete spectrum consisting (Sahnovich, 1964) of
simple eigenvalues λn > 0, n = 1, 2, ..., where λn → +∞ for n→ +∞. Moreover, the eigenvalues
λn, n = 1, 2, ..., are the roots of the function ψ (x, λ). We need some (Abramowitz & Stegun,
1964) asymptotic equalities related to the functions and ψ (x, λ) and Ψ (x, λ)

ψ (x, λ) =

(√
2

(
x+

1

2

))λ
2

e−
x2

2
(
1 +O

(
x−2

))
, x→ +∞, (2)

ψ′ (x, λ) = − 1√
2

(√
2

(
x+

1

2

))λ+2
2

e−
x2

2
(
1 +O

(
x−2

))
, x→ +∞, (3)

Ψ (x, λ) =

√
2π

Γ
(
3−4λ
16

) (√2

(
x+

1

2

))−λ+2
2

e
x2

2
(
1 +O

(
x−2

))
, x→ +∞, (4)

Ψ′ (x, λ) =
1√
2

√
2π

Γ
(
3−4λ
16

) (√2

(
x+

1

2

))−λ+2
2

e
x2

2
(
1 +O

(
x−2

))
, x→ +∞. (5)

We also introduce the special solutions

ψ (x) = ψ (x, 0) , (6)

ϕ (x) = W−1 (0)

[
Ψ (x, 0)− Ψ (0, 0)

ψ (0, 0)
ψ (x, 0)

]
(7)

of the equation (1) with λ = 0.

2 The main result

The main result of this paper is the following theorem.

Theorem 1. The domain D (L) coincides with the set of functions of the form

y (x) = ψ (x)

∫ x

0
ϕ (t) f (t) dt+ ϕ (x)

∫ +∞

x
ψ (t) f (t) dt, (8)

where f (x) ranges over the entire space L2 (0,+∞). For each function y (x) ∈ D (L), one has

xy (x)→ 0, y′ (x)→ 0, xy (x) , y′ (x) ∈ L2 (0,+∞) . (9)

Equation (8) defines a bounded operator on L2 (0,+∞), which is the inverse of L.

Proof. Obviously, the operator L is densely defined, because its domain contains infinitely dif-
ferentiable functions compactly supported on (0,∞); the set of these functions is well known to
be dense in L2 (0,∞). Moreover, the operator L is self-adjoint. Further, note that by virtue
of (2), (6), the function ψ (x) = D− 3

8

(√
2
(
x+ 1

2

))
decays like exponent as x → ∞. Hence

the improper integral in (8) converges. Since f (x) ∈ L2 (0,+∞), it follows that the function
y = y (x) defined in (8) lies in W 1

2 [0, b] for every finite b. By differentiating, we obtain

y′ (x) = ψ′ (x)

∫ x

0
ϕ (t) f (t) dt+ ϕ′ (x)

∫ +∞

x
ψ (t) f (t) dt, (10)
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whence it follows that y′ (x) ∈ W 1
2 [0, b] for every finite b. By differentiating once more, we

obtain

y′′ (x) =
[
ψ′ (x)ϕ (x)− ψ (x)ϕ′ (x)

]
f (x) + ψ′′ (x)

∫ x

0
ϕ (t) f (t) dt+

+ϕ′′ (x)

∫ +∞

x
ψ (t) f (t) dt = −f (x) +

(
x2 + x

)
y (x) ,

i.e., y (x) ∈W 2
2 [0, b] for for each b > 0 and ` (y) = f (x) ∈ L2 (0,+∞). Since y (0) = 0, it follows

that y (x) ∈ D (L). The converse is true as well. Namely, let y ∈ D (L) and ` (y) = f (x) ∈
L2 (0,+∞). By a classical theorem on the general form of a solution of a differential equation,

y (x) = C1ψ (x) + C2ϕ (x) + ψ (x)

∫ x

0
ϕ (t) f (t) dt+ ϕ (x)

∫ +∞

x
ψ (t) f (t) dt,

where C1 and C2 are constants. It follows from the relation y (0) = 0 that C1 = 0, while the
condition y ∈ L2 (0,+∞) and the estimate (1), which will be proved below, imply that C2 = 0;
i.e., y admits the representation (8). Thus, formula (8) defines the inverse operator L−1. Its
boundedness follows from the estimate |y (x)| ≤ R ‖f‖ on every finite interval [0, b] and the
estimate (11). Here and in what follows, the letter R,Rj , j = 1, 2, 3, 4, 5 stands for various
positive constants, and ‖◦‖ = ‖◦‖L2(0,∞).

Let us prove relations (9). First, note that, by virtue of (4), (7), there exists a constant R
such that the estimate

|ϕ (t)| ≤ Rt−−1e
t2

2

holds for t > 0. It is easily seen that the function g (t) = t−1e
t2

2 increases for sufficiently large
t > b. Hence ∣∣∣∣∫ x

0
ϕ (t) f (t) dt

∣∣∣∣ ≤ (∫ b

0
+

∫ x−1

b
+

∫ x

x−1

)
|ϕ (t)| |f (t)| ≤ R1 ‖f‖+

+Rx
1
2x−1e

(x−1)2

2 ‖f‖+Rx−1e
x2

2

(∫ x

x−1
|f (t)|2 dt

) 1
2

for x > b + 1. Here the constant R1 depends on b alone. This estimate, together with the
representation (2), implies that∣∣∣∣ψ (x)

∫ x

0
ϕ (t) f (t) dt

∣∣∣∣ ≤ R2 ‖f‖ e−
x2

2 +

+R2x
− 1

2 e−x+
1
2 ‖f‖+R2x

−1
(∫ x

x−1
|f (t)|2 dt

) 1
2

for sufficiently large x.We have estimated the first summand in (8). In a similar way, we estimate

the second summand. The function h (t) = te−
t2

2 is decreasing for sufficiently large t, and hence∣∣∣∣∫ ∞
x

ψ (t) f (t) dt

∣∣∣∣ ≤ (∫ x+1

x
+

∫ ∞
x+1

)
|ψ (t)| |f (t)| ≤ R

∫ x+1

x
h (t) t−1 |f (t)| dt+

+R

(∫ ∞
x+1

h2 (t) t−2dt

) 1
2

‖f‖ ≤ Rh (x)x−1
(∫ x+1

x
|f (t)|2 dt

) 1
2

+Rh (x+ 1)x−1 ‖f‖

for large x. We have

|ϕ (x)| ≤ Rh−1 (x) , h (x+ 1)h−1 (x) =

(
1 +

1

x

)
e−x−

1
2

16



Kh.E. ABBASOVA: THE SCHRODINGER OPERATOR WITH GROWING POTENTIAL

and hence the absolute value of the second term on the right-hand side in (8) can be estimated
by

Rx−1
(∫ x+1

x
|f (t)|2 dt

)
+R

(
1 +

1

x

)
x−1e−x−

1
2 ‖f‖ .

By adding the resulting estimates, we arrive at the inequality

|y (x)| ≤ R3 ‖f‖ e−
x2

2 +

+R3x
− 1

2 e−x ‖f‖+R3x
−1
(∫ x+1

x−1 |f (t)|2 dt
) 1

2
, x > b+ 1,

(11)

which proves the first relation in (9). The second relation in (9) can be obtained in the same
way except that (11) is used instead of (8) and we take into account the fact that the estimates
for the derivatives ψ (x) and ϕ (x) differ from the estimates for the functions themselves by the
factor x.

Let us prove that xy (x) ∈ L2 (0,+∞). It follows from the estimate (11) that∫ ∞
b
|xy (x)|2 dx ≤ R4 ‖f‖2

∫ ∞
b

x2e−x
2
dx +R4 ‖f‖2

∫ ∞
b

xe−2xdx+

+R4

∫ ∞
b

∫ x+1

x−1
|f (t)|2 dtdx ≤ R5 ‖f‖2 +R5

∫ ∞
b−1
|f (t)|2

∫ t+1

t−1
dxdt ≤ 3R5 ‖f‖2 .

The relations y′ (x) ∈ L2 (0,+∞) , y′ (x)→ 0, x→∞ can be obtained by virtue of (3), (5)-(7),
(10) in a similar way with regard to the fact that |y′ (x)| is bounded by the right-hand side of
(11) multiplied by x. This completes the proof of the theorem.

The results obtained can be used to study the spectral properties of the operator L. More-
over, these results can be extended to the case of the operator L1 defined on the space L2 (0,+∞)
by the differential expression

l1 (y) = −y′′ +
(
x2 + 2x

)
y + q (x) y, x ∈ [0,+∞)

with the domain

D (L) =
{
y ∈ L2 (0,+∞) : y ∈W 2

2,loc, l (y) ∈ L2 (0,+∞) , y (0) = 0
}
,

where the function q (x) satisfies the condition
∫ +∞
0 |q (x)| dx <∞.

3 Conclusion

In the present paper, we have given a description of the domain of definition of the one-
dimensional Schrödinger operator on the positive half-line with the Dirichlet boundary condition
at zero. In fact, the potential grows quadratically. We have applied the classical method of find-
ing the resolvent of a differential operator. We have also found an explicit form of the operator
which is the inverse of the original operator. The results obtained can be used in the study of
direct and inverse spectral problems for the considered operator.
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